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INTRODUCTION

Control system compensation and optimization, signal/noise
sepaiation, and system simulation are some areas in which the follow-‘
ing problem must frequently bé solved: Given a real rational alge- -
braic function, construct a physical system which has its input-
output relationship described in thé complex plaﬁe by the given
.funétibn. In other words, construct a physical system ﬁhich has a
given tr§nsfer function., If the system to be constructed is to be
an electrical network, then this probleﬁ falls into the area of net~
work synthesis = specifically, the area of network realization .
techniques,

Of particular interest in the above mentioned applications
is the voltage transfer function T(S) -Vthe ratio o} steady state
outht voitage to input voltage in the domain of the complex fre-
quency variable S. In many cases it is desirablé to realize a given
T using only two kinds of passive eiements and ;o aé?ive‘devices.
For exampie, in low frequency servomechanisms resisﬁor-cépacifor.
(RC) compensating networks are usually desired. Another frequently
required feature is the existence of a common reference node or
ground between the input and output te;minals of the network.

It is this very special type of netwurk? the RC three~ter~

minal network, with which this thesis is concerned. The primary



purpose of the thesis is to provide a new-procedure for constructing
an RC network having certain terminal characteristics (e.g. T)
specified beforehand. The realization procedure to be presented -
gives the metwork designe; the tools to develop a variety of net~
works for a given set of network specifications. During the
development the designer exercises much control over such features .
of the resulting network és the network structure, the gain, and the
number of elements,

The development of a network is car?ied out us;ng the pa~
rameters y,,, Yo1s énd T. These parameters are‘defined in the -usual
mannef in Section 1.1. Section 1.2 gives_the conditions which a'
given set of these paraﬁeters must satisfy if they are to charac-
terize an actual RC three-terminal network. Any RC network reali-
zation technique is easily extended to the RL or LC class of net~
works. Section 1.3 presents one method of reducing RL and IC reali~
zation problems to RC problems.

Tﬁe ﬁools of the realization procedure are fgur types of net-
work removals. The designer must chopse one of these four during
each step of the development. In Chapter 2 each type of removal is
disgﬁssed in detail with emphasis placed upon whaf can be accom-
plished by a particular removal when it is used during the develop-
ment of a network. Examples are given to illﬁstrate effective use
of the various types of removals and to.iilustfate the ease with
which dgvélopment of a network can be carried out.

Examinatjon of the bibliography indicates that there are many



methoés which mizht be'employed to develop an RC netwoik,given cer~
tain tgfminal characteristics. Several examples, solved previously
by other methods, are presented in Chagter 3 to grovidg a comparison
of networks obtained by the method oé Chapter 2 to those obtained by
the other methpds.

 ‘The ele;ents in all circuit schematics of this thesis are
given in units of conductance (not resistance) and capgcitance. This
is mentioned here in the introduction to avoid notiﬁé it on each

schematic presented,



' CHAPTER 1

THE NETWORK PARAVETERS

1.1 Definitions,

ihis thesis is concerned primarily with three-terminal net~
works (3 T.N.). A 3 T.N. is a special casé of the two-port or two-
terminal-pair network (i.e. one terminal of each pair is a common
point or ground point of the network). Figure 1-1 illustrates a
general 3 T.N, togéther with the conventional aséignment of voltages

and currents which can be measured at the terminals,
I : 12
o= -

3 T.N.
V1 v,

, |
Q ' 9
‘ I

Figure 1-1." A three-terminal network,

Description of the terminal characteristics of a linear
3 T.N. can be accomplished through use of the short-circuit admit=~

tance parameters which are defined by the following relationships:

1 v2 s (1-1)

= + . .
R LA TR £ P



and: 12 = Y1 Vl + y22 Vé . (1-2)

The thesis is especially concerned with the driving point admittances

~ 12 ’
¥y = 5 = » {1-3)
| 22 V2 Vl 0 . .
the transfer admittancelz B
1, . i
Vo3 = T =0 ? (1-4)
. 21 ,Vl v, 0
and the forward voltage transfer function:
v T ey, ,
T = Vg Leo = 21 . (1-5)
Y1 |*2 Y22

Each of these expressions follows immediaﬂe;y from Eqn. 1-2,

Assume for the moment that it~is possible to construct a net=-
work having these and only these para&etérs (i.e. Yoqs Yg1 and T)
specified. Then just what type of transfer characteristicé (i,e.
input~;utput relétionships) can be realized? Two obvious answers
are: (1) an input voltage-open circuit output voltage relétionship
(i.e. T);?or (2) an input voltage-short circuit output current
relationship (i.e. y21). No; so apparent an answer is; (3) an input
current-short circuit output current.%elationship. fhis is possible

since fromquns. 1-1.and 1-2:

II v
E; v.=g " 2L (1-6)

1 Y2,

Since 12 is the input, the resulting network would have to be turned

1In all networks to be discussed the reciprocity prbperty
holds; that is Yo1 = Yi2° Only Y23, will appear hereafter,



«

around in order to conform with the convention of conmnecting the in=-

put source to the left hand side terminals,

1.2 Parameter Restrictions;

The next important question to be answered is 'What re~-
strictions must be. placed upon these parameters in order to guaran-

tee that they represent an RC 3 T.N.?".

The RC Driving Point Admittance. TFirst the parameter o2
will be considered. The admittance Yoo is a dri.ving point admittance
(i.e. the current to voltage ratio taken at one pair of nodes), and
in this thesis it is an RC driving point admittance. It is well
known that an RC dr:‘wiﬁg point admittance 'y can always be written as:

(S+al) (S+a2) (S+am)
¥y = ¢ (5¥b.) (570,) ... (575.) (-7

where: () o< a, <ai.+l ; i=1,2,...,m-1,
@ 0<b, Kb, i=1,2,...,01,
(3) ai< bi<'ai+1 ; i=1,2,...,n,
4) ¢ >0, :
(5) Either m=n or m= ntl,

e

These conditions can be established from Foster's reactance
theorem (15] (ic driving point criteria) by a simple LC -»RC trans-
formation. A thorough discussion of IC and RC driving point ad-
mittances can be found in most introductory network synthesis text-
bool.{s. A relatively simple, yet somewhat less known, derivation.of

the necessity of Foster's conditions has been given by Tsang [33] .



The sufficiency of these conditions can be established by ex=-
panding the function y/S into partial fractions and then multiplying

through by §; this gives:

n

G, S
o - st ot S S am
- i=1 i

Calculation of C , GO’ and Gi from y given in Eqn, 1-7 will alw&ys
yield non-negative real numbers. Eqn. 1-8 can be recognized as the
parallel combination of a capacitor C,, a conductance Gy» and n ad-

mittances each consisting of a conductance G, in series with a capaci-

i
tance G./b,.
i i

The RC Voltage Transfer Function. Let us now consider the

transfer function T(S)., From analysis experience it is known that

T will be a ratio of real polynomials in §:

. -1Sm-1+ e +c0
T(S) = K o . (1-9)

s™d__S + ..ty

The necessafy and sufficient restrictions to be placéd upon éqn. 1-9
in order for it to represent an RC 3 T,N. voltage transfer function
were established by Fialkow and Qerst [b]. The necessity of their
conditions will now be derived in a different manner,

‘ Assume'ihat an RC 3 T.N, is given and through methods of cir-
cuit analysis Yog: y21, T, and 2z are calculated. The impedanée

11

Z1 is the network input impedance with 12

with Yog» 1/z11 must be an RC driving point admittance. Network

= 0; consequently, along

analysis also provides the following equality:



g = 22 Ay -y, 2 1-10
11 7 Ay vherer Ay =y ¥y, m ¥y - (1-10)

Equation 1-10 can be inverted and written as:

2
o Y21 , (1-11)
n 11 vy
or: y. 2
: 1 21 ‘
: Voqg = = (1-12)
11. z11 yéz

Dividing'Eqﬁ; 1-12 by Yoo and using Eqn. 1-5 gives:

a2\, .1\ . .2 .
(y22)<%11 zll) ™ . (1-13)

Let pj be any pole of T; hence, it isiatileast a double pole of Tz.
Equatibn 1-13 can be multiplied by (S-pj)2 and evaluation of the

result at S=pj can be attempted:

S-p. S-p.
22 J 11

-Each of the expressions:

2.2 e
(s-p)’r - (1-16)

S=p

S-p.l - S-p. .
- » (S-p)y l - » and ‘ -
Yoo S pj 3’711 |8 Pj z1‘1 S pj

must be finite since Yoo yli, and z have only simple polés and

11
zeros as required by Eqn. 1-7. Therefore, the left and con§eqﬁent1y
the right hand side of Eqn. 1-14 is finite. Hence, pj is a simple
pole of T, which implies that each pole of T is a simple.pole.

Furthermore, since Py is a pole of T, (S-pj)T S=p is not
3

zero. The left hand side of Eqn. 1-14 contains the factor

.( S-p:
(S-py. - "—])
i’ zl1

S=Pj , which is finite. Consequently, the factor



'mj[&__ . cannot equal zero. If it were zero, the equality in
Ya9 PJ ) . : ;
Eqn. 1-14 would not hold sinee it has been established that the .

right hand side is not zero. Thus;

S-p. , = -
yzz’] 3=Pj # 0, or yzz(pj) »0. (1-15)

Therefor_e, each pole of T must be rea’l and noﬁ-positive since it is
a zero vof }'22T ' o
_Svuxmnarizing, it can be concludkéd that poles of T are real, .

_mon-positive, and distinct. This statement can be strengthened by
noting that T(0) must be ‘finit:e since it co’rresponds. to the network
s~teady state direct current (d.c.) gain; Hence, poles of T axle
negative and distinct. - |

" Let us now examine the network wifh S = & where o320, as
suggested by Lewis [21]. Since each element now appears to be a non-
négativé conductance, the network is equivalent to an all resistor .
network which has for its voltage gain (given any o above) the num~
5er T(o). It is impossible for a network coinposed only of positive
resistors to have a volt-age gain greater than unit);., Furthermore,
it can equal unity (except in the trivial case when Tx1l) only when
=0 or g=w (i.e. when capa'citors, become open or short circuits).
Similarly, the gain can equal zero (except in the trivial case when

T=0) only when ¢ = 0 or G=00 . These conclusions can be stated as:

04T €1 for 0gogee , (1-16)

andi: 0<T(@) <1 for 0<&<eo ., (1-17)



Equation 1-16 requiresr that m4n, and that K<1 whenever mn,
Evaluating T at & = 0 gives:

(Kcoldo)‘ <1, or when ¢, #0 K& do/co. (1-18)

Equation -1-17 prohibits T from having zeros on the positive
real axis, Furthermore, if x4 is the minimum value of K/T{¢) on
0<G << (whenever the minimum exists), then Eqn, 1-17 esfablishes .

. the requirement K< kd. It is also apparentﬂthafz K$0. |

If the numerator of E;In. -1.-9 is rewritten as an ath degree
polynomiz;l (the first n-m coefficit;_nts are actually zero), and if
the above cdnditions which T must satisfy are summarized, then
Eqn, 1-19 is the result.

c 8"+ ces F c.'

T(S) = K -2 O where a_#o.

n
dnS + oees +d0

- (1-19)
(1) Poles of T are negative and distinct,
(_2) No zero of T lies on the negative real axis.
(3) 0<K¢ min(dn/cn s dO/CO) .

&) 1If kd = or(nol_zlagx(/'r(o‘)) exists, then K(kd.

1

Note that the leading coefficien_ts (cm and dn) ofA the numer=-
ator and denominator polynomials of Eqn. 1-19 are not necessarily
unity. This introduces the possibility of normalizing the upper
bound on K aé determined by (3) and (4) above. For example, a given ‘

T could be rewritten with each of the numerator coefficients

1I;’:‘ T = KN(S5)/D(S), kg may alternately be defined as the
least value of k for which D(g) =~ kN(o) has a zero on¢>0. Ifd,
is this zero, then kg = D(C,)/N(0s) which is the minimum value
of K/T(¢). ) -

- 10 -



having been rultiplied by the constant C. The upper bound om K for
" the new T would be 1/C times the original upper bound on K. If C is
chosen equal to the original upper bound, then the upper bound on K
for the new T is unity. Later this operacion‘will be referred to as
scaling the upper bound on K.

The sgfficiency of the conditions in Eqn, 1-19 is best es~-
fablished by giving a genéral redalization procedure fo? any T which

satisfies Eqn. 1-19. The author is aware of only one such procedure,

P

that of Fialkow and Gerst C?]. This procedure is briefly discussed-.
in Section 3.1. One notéworthy conclusion that can be dr;wn from
Eqn. 1-19 (2) is that distinct common (surplus) factors of the type
(S+;), a>0, can be introduced into the numerator and de.nominator of
T until the numerator has all non-negative coefficients. A proof of
this is given in [9] since it is necéssary to do this in order to
perform their synthesis. Hereaftef, it will be assumed fhat thié
modification has been made to T. That is:
e; 20 for i=0,1,...,n " (1-20)

From analysis it is known that the caléulation of T from a
giyen network involves only multiplication and addition of admit-
tances (e.g. T could be calculated by‘eliminating all.inCernal net-
work nodes via repeéted appliéation of the general star-mesh trans-
formation [ZQ Eﬁﬂ). Consequently, if cancellation of common factors
is prohibited dufing the calculation of T, then the resulting T must
have non~-negative coefficients. By interchanging input and grouAd
terminalé, it is also true that 1-T is a 3 T.N. Qoltage transfer

function., Thus, it must also have non-negative coefficients.

<11 -



';his gives: . a4 - ke, 2 0 for £ =0,1,...,n. (1-21)

As a necessary condition, Eqn. 1-19 (3) and (4) can Beﬂfeplaced wiﬁh
the moreﬁusable criterion: ’
0 <Kg sx?x(di/ci). (1-22)

Equation 1-22 cannot be used to ;alculate the upper bound on
the gain associated Qith a given:polé-zero configuration for T. It
can be used, however, to predic; the maximum possible K under the
condifion of any given surplué factors., Thgifollowing examplé will
illustrate this.

Examnle 1-1, ansidef the transfer function;

2
¢ ow g SFL(SHE) _ | S747SH6

(5+2) (5¥3) 215516

.

Equation 1-22 gives a number which K cannot exceed:

8,5 5

K £ m1n(6{7'1) 7 -
1f a surplus factor of (S+1) is introduced into T (thereby

increaéing the complexity of the network), a larger K is then

indicated:

o s3aesfri3ss N
e A
$+65°+115+6
o ] in¢ &1L,8,1 4 _ 3
which g}ves. K,S min( ©'73°8°1 )4

No matter wh;t surplus factors are intrdduced, it _is certain
that X cannot violate the restriction dictated by Eqn. 1-19(4)
KT () is a minimum when:(02+56+6){26+7)-(02+Wq+6)(26+5) = 0,
This is true when o = V5. Hence: .

K - 31206 %.0.832 and K< kd = 0.832 ,

K = TW " 72ve

-12 -



A Summary of Restrictions., It is now possiblé to sunmarize

the conditions which must be placed on the set of parameters (YZZ’
Y12 and T) in order that they represent an RC 3 T.N,
(1) T(8) must satisfy Eqn. 1-19 (as modified by Eqn. 1-20),.
(2) Each pole of T(S) must be a zero of Y92 (Eqn. 1-15)..
(3) Yoo ﬁust be an RC driving ﬁpint admittance (Eqn. 1-7).
(D) ~¥y, must equal T Ypp andrthe coefficients of the nuﬁer-
ator polynomial of Y91 mu%t be non-negative, Note that eéch

pole of ¥pp is @ pole of y,,¢

It should be noted that each zero of Yo2 need not be a pole

of T (i.e. could also have the same zero)., Zeros common to Yo2

721
and Y93 will be called common zeros. Note also that each pole of -~
Yoo need not be a pole of Yo1° A pole of Yoo which is not a pole of

¥o1 will be called a private pole.

1.3 Two-Element-Kind Network Transformations.

RC network realization procedures are easily generalized to
include other classes of networks containipg only two kinds of pas-
sive two-terminal elements. ~That is for each RC network there is a
related RLvand Lé network. Conversely, for each RL or 1€ nétwork
there is a corresponding RC network.

Consider any RC netw&rk. It is an interconnection of ele=

ments having one of two types of admittance:. a conductive admittance

- 13 -



which.can be séecified by a constant such as g; or a capacitive ad-
-mittance speéified, for examplg, by CS. 1If each network admittance
is scaled b& the factor 1/8, then the RC network becomes an RL nét-
work. For inSCagcé, g becomes g/S which is an inductive admittance;
and CS becomes C which is a conductance. The terminal admittﬁnces
oZ the RL network equal thelterminal admittances of the coiresponding
RC network multipliéa by 1/S. T¥Note, however, that this RC -»RL
. transformation does not affect T. Equation 1-5 shows that T for the
RL network is identical to T for the RC network. The inverse trans-
formaéion (i;e. Ri-'RC) is accomplished by multiplying the RL a@mit-
tances by S. |
The above.transformation is not the only way to show corres-
pondence betweeq RL and RC metworks (e;g. replacing S by 1/8 carries
5n RC into an RIL netwo:k and vice versa). The purpose of this
section is to establish equivalence of the RL (or IC). synthesis
problem and the RC problem, thereby justifyipg‘thé-study of only RC
realization procedures, An RC-RL equivalence has been establ{shed,
s0 it is unnecessary to discuss additional transfor&ations.
Cne way.to establish correspondence beéweeanC and 1C net~"
works is to replace S in the RC édmittancesvwith S2 and to'divide
the result by 8. Capacitors remain capacitors, but resistors become

inductors. RC —-+LC is thus accomplished by:

SC —- SZC/S = SC , g — gl/s = 1/1S, and:
S g
T(S) ~» = TSy .
¥o2(8)/8

- 14 =~



The inverse tran;formation (i.e. IC+RC) is accomplished by multi-
plying the IC admittances by § andAthen replacing S2 with S,

The following conclusion can be drawn from the above dis=~
cussion: Given a set of RL or LC network parameters, a network can
be developed using an RC network realization procedure. The follow~
ing steps should be taken:

(1) Transform the parameters into RC network parémeters.

(2) Realize the RC'network.

(3) Change the RC elements to appropriate RL or LC elements

a2s goveraned by the inverse of the origiﬁal transformation,

* This procedure is summarized in Figure 1-2 for the two transfor-

mations discussed above.

- 15 -



RL - Specifications

IC Specifications

RC Specifications

PO B ON I 16 22 | 75,09 | T(®
b4 b X ) R 3
8¥,,(5) $y,,(9) | T(s) 5922(8) | 8y,,(8) | T(S)
Let S%~S S%*S sz,s‘

RC Specifications

RC

Network

Y

RC Network’

L

¢s T g cs | g
Lid hld L
L
| % L
c g/8 cs T g/s

RL Network IC Network

Figure 1-2., A method of RL and LC synthesis using RC
realization procedures. Elements are specified in
admittance format,
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CHAPTER 2

THE REALIZATION PROCEDURE,

This chapter is concerned with constructing a network which

b
)

to have a given set of terminal characteristi?é (y22’ yil, and T).
It is #ssumad, o course, that the given set of parameters repfesént
an RC 3 T.N. (i.e. satisfy the restrictéons of Section 1.2), Let N
be tﬁe network t§ be realized. The basic idea of the method to be
presented is to wealize part of N such that whenkthis partial reali-
zation is properly connected to a network N', the togal result will
be the network N. DMore specifically, an admittance is removed from
N in such a manner that the remaining network to be realized,'N', is
less comblex than N. Subsaquent removals result in further simpli-
£ication of the remaining networé until the total fealization is

finally completed.

Tabulation. As the development of a given set of parameters

into a network is carried out, it is quite helpful to have a sys-~
tematic tabulzstion of the steps which are taken. After each removal,
the parameters of the remaining network to be realized are calcu-
lated. Statement of these parameters actually defines a new problem
which, if progress is being made, ié an easier realization problem

thaan the praceding one. A good table should thus provide direct



obsefva;ion'of the progress being made. - An extension of Tsané's
'table Cbi], which was origin&lly proposed for the zero~shifting
technique, will be used. R
o~

‘Coasider the table Shown in Figure 2-1, Iﬁ is divided into
two main sections entitled 'Network Parameters' énd 'Removals'. The
paramete;s'describing_tﬁe desired'neéwoik are entered on the>firs£
line iq thei: respective columns. To the right of these, in the re-
moval section but still on line one, pertinent data about the firsé
removal is entered. Specifically, the admitgance (y) of the reméval
and the manner in which it is to be removed (the 'type"of removal) .
are entered. 4&s will be‘seen later, this information wiil permit
diréct calculation of the parameters of the remaining network to be
realized. These parameters are tgen entered on line two, which
actuaily states a mew realization problem,

The 'N' column is used to designate wﬂichbnetwork is being
developed wheh-there is more than one network development in a single

tzble. A need for this column does not arise until Section 1.3. A

complete explanation of its use is given in Section 1.3. -

Network Parameters : Removals

Y22 | vy | T I v |eveeln

Figure-2<1, A table for:tabulating theé network devélopment.

=18 -



Network Gain. The method of this cﬁapter does not always
reéiize the network parameters Y21 and T exacfly. The pole=zero
configurations of T and ¥pq are realized as specified, but the over=-
all network functions are realized only to within a constant multi-
plier, k, which is eas{ly determined at the completion of the de-
velopment. Hereafter, whenever the parameters are specified, tﬁe

factor X will appear in both T and o1+

¥4

t is normally desirable to have as large a network gain as

' possible. A&n upper bound, however, was placed upon K in Section 1.2,
1f the upper bound is determined by requirement (3) of Eqn. 1-19,
then the iaximum K can usually be attained. Specifically, a network

“d.e. gain(or infinite frequency gain of unity can be attained by a-
voiding 're’sistive paths to ground in the former case, and avoiding
capacitive paths to ground in the latter case,

It is quite easy to realize relatively'low gains exactly.

Assume for the moment that a network has been developed, and for
this realization K is determined to be the number A. Then by merely
modifying the final step in the development, any K such that 0<KK£A
can be attained exactly. However, this gain reduction will usually
require ore (sometimes more) additional element. A discussion of
the gain reduction procedure will be given in Section i.l (see the

subsection entitled The Network Gain Constant),
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2.1 Shunt and Series Removals,’

Shunt Removal. The simplest type of removal from the network
X speciiied by Yggr Yo1s and T is the shunt (Sh) admittance y, re-

moved as shown in Figure 2-2, The parameters of the remaining net- .

Figure 2-2, The shunt removal.

work N' are easily calculated from:

Yag = Yoo T Y (2-1)
')721' = -y21 » (2'2)
and T 'yz l/yzz - (2—3)

What t&pe of admittance should be removed in order to méke
the priqediéarametefs a simpler set than the otiginél set of éa-
rameters? Remember that N' must be an RC 3 T.X,, so'ihe_primed §a-
rémeiers must satisfy thé conditions expressed in Section 1.2,
" The admittances y énd Yoy are both RC driving point admit-
tances aud can therefore be expanded into the form of Equn. 1-8:

. Zcis
Yo = CuS* Gyt < S, 0 (2-4)
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: : g;5 .
and y = ¢ S+g. + .
bt 0 — Sip
: i i

SuBtracting_Eqn. 2-5 from 2-4 giﬁes y22' per Eqn., 2-1. Tke partial

. 2-5)

‘fraction expansion of yzz'ls must yield all non-negative coefficients,
This requires that each pole of y must be a pole of Yoo+ Then;

(Gi-gi)s

,  (2-6)
S+bi

_yzz' = (C',,,-c..,)S' + (Go'go)."' Z
i

where: ©,€Cu, ¢

<
%6,

0 , and gig_ci
are further restrictions to be placed upon y. -

. First it is noted that a p;}e of yzz' need pot be a pole of
Yoo3 the polg at S=-bi can be eliminated b} making gi=Gi' By recal-
1ing.thét each pole of y21' must be a polé of yzi' and by notigg
Egn., 2-2, it can beconcludad that’complete removal of a pole éf Yog
is permissible only when the pole is a private pple. Furthermore,
it is usually desirable to eliminate private poles, since y22' and
T' are then less complex than Y20 and T. A

What else can be accoﬁplished by a shunt.removal? Note in
Egn. 2-6 that the poles of y22' are all poles of ¥y but that thg
zeros of y22' will in general be quite differené ftém thé zeros of
Y95+ Hence, the shunt removal can be used as a zero-shifting step.

It is sometimes possible to use the zero-shifting property.
to simplify the realization of N. Tor example, assume that the
zexos of Yyy ore shifted in such a éannerAthat yéé' and y21' have a
coxmon zero (this is possible only if Y21 has a real non-positive

zero). Now if Yai has no right half plane zeros, then cancellation
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of the common zero can occur during the calculation of T' from Egn.
2-3, The resulting X' is less complex than N since the order or de-
gree (i.e. the degrec of the denominatér) of T' is lower than the

oxder of T. Eowever, if has right half plane zeros; then can~

31
cellation of the cormon zero may cause negative coefficients to ap=-
pear in the numér;tbr polynqmial_ofkr'. If this is the case, then
the common factor cannot be cancelled and nothing has been gained by
: proéucing the'c&mmon zero. Of course, the possible appearance of )
.negative coeificients can easily‘be checkad before the actual zero-
shifting is performed.
Some rules (easily derived using the root locus technique;

sce thé Append{x) which assist one in determining just what admit-

tance should be removed in order to shift a zero to S=a are:

(1) Partial removal of a pole (i.e. giqcci) moves all zeros

(exgept'the zero at S=0, if it exists) toward the pole at -bi.'

(2) Partial removal of the capacitance C, (i.e. c,<Cs) shifts
211 zeros (same exception) toward S=~®, This is actually a

special case of (1); the pole is at infinity.

(3) Partial removal of the conductance Go (i.e. g0<(G0) shifts
all zeros toward the origin. Whereas complete removal (i.e.

gO=G0) produces a zero at the origin. A zero at the origin
can occur in y22. only when y21 has a zero there. Otherwise,
cancellation of § would not occur in T', and T' would not be

;ealizable.

After fhe type of shunt removal ﬂas'been decided upon, the
coeff;cients of y can be calculated from Eqn. 2-1. To produce a zeré
in y22' at 8=a, choose y such that:

y@) = y,,(a) . @-1
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If the coefficients of y calculated from Egn. 2-7 satisfy the re~
strictions given after Eqn. 2-6 (equality can hold only in the
spacial cases mentioned above), then it is possible to use the pro-

posed y to perfom the desired zero-shifting.

Series Removal, Another elementary removal from the network

N is the series (Se) admittance y, removed as shown in Figure 2-3,

y

T

Figure 2-3. The series removal. -

/]

The parameters of the remaining network N*' are easily calculated

from:

1 11 ' :
= = T e, (2-8) .
Y22 Y2 ¥
T =T, . (2-9)
S !
and —y21' = T y22, . . (2-10)

* An RC driving point impedance (the reciprocalef Eqn.-1-7)
can be expanded into partial fraction form with all non-negative co-

efficients, Thus, 1/y22 and 1/y can be written as:

R S Z HJ—— {2-—11)
Y22 ® g sty '
1 , hy

and ; = T, T - g;;i . (2-12)
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Subtracting Eqn. 2~12 from 2-11 gives 1/y22'.y,The partiﬁl
fraction expansion of 1/y22' must yield all non-negative coefficients
in order for 1/?22' to be an RC driving point impedance.  Thus, each

zero of y (pole of l/y) must also be a zero of Yoo+ Then;

(H.-h.)
1 i1
v= (R - rw) + Z > . ('2"13)
Y22° ® T Stay '
where: r ¢ R, and hi_<_ _Hi

are further restrictions which must be élaced upon &.

It can be seen from Eqn. 2-13 that a zero of Y92 need not be
a zero of yzz'; the zeroé at S=-ai, for example, can be eliminated by
choosing hi=Hi. By recalling that each pole of T' must be a éero of
y22' and by noting Eqn. 2-9, it can be concluded that complete re-
moval of a zer6 fron yéz is permissible only when the zero is a com~
mon zero. It is usually desirable to eliminate common zeros, since
y22' and y21' are then.less complex than yzz.and;yZI.

What else can be acéomplished b& a series removal? Equation

' are all zeros of Ypos but that the

2-13 shcws that the zeros of Yoo
poles of.yzz' will in general be quite different from the poles of
Yoqr Eence, the series removal can be used as a pole-shifting step.

It is sometimes possible to use the pole-shifting property to
simplify the realization of N. For example, assume that the poles
of Yyo are shifted in such a manner that y22' has a pole where T has
a zero (this is possible only when T has a negative zero). Now if
T has no right half plane zeros, then cancellation can occur during

the calculation of y21' from Eqn. 2-10. The resulting N' is less
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comélex than N since the order of y21' is lowe£ than the order of
Y1 (éctuaily,‘a private pole has been pFoduced). However, if Yo1
" has right half plane zeros, then cancellatiaA in Eqn. 2-10 ﬁay cause
_ negative coefficients to a?pegr in the numerator polynomial of -y212
If this is the case, then the factor cannot be cancelled and nothing
has beeﬁ accompiished by the pole shifting. Of course, the possible
aépcarance ofinegative coefficients can easily be checked before the
_acﬁuai pgle-shifting is performed. '

Some rules (again easily derived using the rooé locus tech~
.nique; see fppendix) whiéﬁ'assiét one in determining just what series

admittance should be removed to shift a pole to S=a are:

(1) Partial removal of a zero (i.e. hi<_Hi> moves all finite

poles toward the zero at S=-ai.

(2) Partial removal of the series resistance R, (i.e. T, {Ru)
shifts the poles toward S=-ew . Complete removal (i.e. r =Ru)

guarantees a pole ia y22‘ at infinity.

After deciding how to shift a pole to the desired position,
_thé coefficients of the admittance y can be‘calculatgd from Eqn., 2-8.
Té pfodtce én y22' a ?ole at S=a by‘a-series remov?l, choose y such

-that: N : - _
' y@ = yy(a). © (2-14)

‘If the coefficients of y calculated from Eqn. 2-14 satisfy
the restrictions given after Eqn, 2-13 (hi can equal Hi only when
-ay is a common zero), then it is permissible to use the proposed y

_to perform the desired pole-shifting.
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The -I,adder Nemc:&; At this point it can be s“egn hogl the
yladder class of-networks can be developed. If only series énd shunt
rgmovals are‘used during the deveiopment of a network, then the re=-
sulting network is a ladder. Shunt removals can be used to produce
cormon zero; which can then be eliminated.by seriéé removals,Aand/or
-séries removals can Se used t0‘produce'private p&ies which can then
be eliminéted by shunt removals. T must have only real, nou-posi-
tive zéros in oxder to éompletély develop a network with just series
and shunt remo&alstn Thig procedure is commonly called the ‘zero~
shifting' technique (18]. Example 2-1 gives a simple iilustyation
of this realizaéion‘procedure.

Examgle 2-1; Deyelop an RC ladder network haviﬁg the trans-

m

fer function T and the output admittance Yoo given below.

o (SR L L (SHD) (S15) =5 oy = gD (55)
Y22 s+3  °? (572) (5+%) ° Y21 s+3  °

A shunt capacitor can be used to produce a common zero at

==5. Let §=CQS. Eqn. 2~7 then gives the value of Coot

L (2:5)(6-5) .
S5ce, G-5) = Ce 3/197

Since C., is equal to unity, the removal is‘permissible. The
'pafameters of N' can be calculated from Eqns. 2-1, 2-2, & 2-3,

C o (SR (SH) 3 o 7(S16/7) (5+5)

Y22 5+3 10 ° 10(s+3) . °
ey v o 10K _S+L
Yo T Yy @ T 7 S+16/7 °

N' must now be developed., This is essentially a new problem;

the primes will now be dropped from the above parameters.
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A series y = (S—i—S)/h2 can be used to eliminate the common:
zero at §=-5. For complete removal, hz must equal HZ, The
residue, H,, at the pole of llyzz.can be calculated from -

Eqn. 2-11: S+5 )
H2 PO = 20/19.
Y22 |8=-5

Then y,.' can be calculated from Egn. 2-8:
22

1. _ 10 $+3 _20_ 1 _ 50
Yaq'! 7 (5+16/7)(S%5) T 19 s+5 133 (ST16/7)M

The network which must now he realized is:

10K &+l

19K
~—(8¥1) , and T = 7 §+1677 °

133(""-16/7) ,

Yo2 ° Y21 T

' 'Aishunt removal y,.= 8y = 1.,3’3(-]-"-6‘ - 1) 171/50 will produce a
comuon z.ero at S=-1, This leaves the network:

Ygp = 133(S¥1)/50 , “ypy = LOK(SFL/5 and T = 10K/7 .
.Lh:.s final networ ck is just the series adm:.ttance 133(81'1)/50
(i.e. eliminate the comnon zero). For this flnal network,

'L-‘ = 1, which gives 10K/7 = 1 or K = 7/10. This development
-is tabulated in Figure 2-4, where the network schematic is
also given. Note that the removal columns of the table pro-
vide the information necessary to draw the schématic.

The upper beund on K fo:; the ladder c¢lass of networks is
8/10 [8} [30] for the T in éhié exa:.np.le.. Howe;ver, the maximum
K for zn RC 3 T.N. is unity. A maximum K, 3 T.N. realization .

will be given in a later example (see Example 2-4).
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Va2 Y23 T “ y | typej_‘\l.
(SE2) (559 RESHL) (S+5) K(S+1) (S5+5) 3 sh
S+3 s$+3 (S+2) (S+4) 10
7(5+18/7) (§+5) 3 10K _S+1 _1_2(8*5) Se
10(5+3) \ 7 s+i6/7 | 20° )
133 . 1ex : 1
50\8.16/7) R (s+1) 8 50 Sh
. . 10K 133
%(S‘t‘l) % 'L7‘" =1 -—53(S+1) Se
133/50 19/20
. 1
14 [ )
133750 19/4
171/50 .3/10
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Thé Network Gain Constaﬁt. Before extending the above tech-
nique, some coIments abéut X are in order. The paraméters T, Yo2°
and Yoy for zay network are unaléered whenever elements are comnected
between the imput terminal and ground. Thus, the development oé any
network frem these paramcters essenﬁially aiways terminates with a
series removal. This termination of development can be brought a-
bout whenever the T to be realized is a constant - the_broduct of a
numerical constant and K. Since a network composed of a single
series admittance has unity gain, K can be evaluated by setting the
firal constant expression fof T equal to unity., This was illus~-
trated in the preceding example. The usual method for calculatihg-
K (see for example:fZ}{l§3i2Q3i34}[36}), which in many cases involves
complicated calculations, is actually uﬁnecessary. ‘

Suppose that a realization problem.hag been reduced to one
where a series admittance removal wili complete the realizafion.

The parameters can then be written as:

Yoo =Y » "Y1 = Ky/A, and T = K/A . (2-15)

If y is removed as a series admittance, then K = A for the network.
‘It was'implied eérlier in this chapter that any K cou}d then be
realized, such that O<X<A. This can be accomplished by first re-
moving a shunt admittance (insteéd of the series y) equal to &y,

-

where 0£&¢ X1, The realization can then be completed with removal

z

of a series admittance equal to (1 ~-c¢f)y. K for this realization

can then be calculzated from:

IAQ-)=1,  or: X = A(1-¢0) SA. (2-16)
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Thus, any X 'such that 0<X<A can be attained by pro’pérly

choosing oL, iﬁen A from Eqn. 2-15 and the desired K, choosey
= 1-%, ' 2-17)

zad. then perform the above mentioned shunt and series removals to

complete the realization,

2.2 .The 3ridge Removal,

ifT ?as,one'or more pairs of complex éeros, ﬁhen eventually
the pole-zero shifting technique will failito simplify the remaining
’network. Consgquencly, the network dévelopment cannot be completed.
Ta ensble realization of more general types of T, another type of
" removal is needed. In an attempt to fulfill this need a new type of
'removal_is proposed - ; removal that can be uéed*to shift fhé zeros
of Yoi- if the,cqmplex‘zeros of Yy, can be shifted to the realiaxis,

then the network development can be completed via the common zero -

¥

private pole tecknique. To accomplish the shifting of the zeros of

y21'the bridge (3r) vemoval has been created. It consists of remov-
ing an admittance Xy from»-yzl and an admittance y from Yoo 38 shown

%

in Figure 2-5.

Ry
- |
o—  +—@ O ®
N ! R, N* ‘

(1-K)y

Figure 2-5, The bridge removal,
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Even though the exact element values of the admittances in

i
)ll
(]
[
(A
[
)
[
)
0
I

anot be ceteramined until after X is calculated at the -
completicn of the realization, the bridge removal has been con-

structed to enable immediate calculation of the parameters of N':

. y22 = .yzz “Y (2-18)

(-
-yZ].' = -YZI - Ky, (2-19)
. A _ - ' " ) _
and T' = y21'/y22 . (2-20).

Xote that the factor K appears in the removal from Since Y21

-y21"
itself contains the factor X, the zero shifting can be performéd

without actually knowing K. Howévgr; the total admittance removed
from Yoo contains no such féctor K.wﬁicﬁ enablesvi:mediate calcu~

lation of y,,". This feature was provided by the shunt admittance
) 22 P y

(1-X)y.
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requirements
that were imposed on y for the shunt removal since y22'>is calcu=-
lated in exactly the same menner. A pole should not be completely
removed from Yoo unless the same pole is simultancously removed from
yzi. Zero shifting must not produce a zero in &22 at $=0 unless a.
zero is simulta;epusly procduced in Yo1 at $=0 by the Ky.subtraction.
The admittance y must also be chosen so that the numeratof poly-

nomial of'-y21 will 2ot have any negative coefiicients. If a nega-

tive coefficient appears, then X' could not be realized by an RC
3 T.N,

2e restricrions which must be placed upon the general bridge

removal can be sumnarized ss:
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(1) ¥y must satisfy the shunt removal restrictions,

(2} 411 coefiicients of the numerator polynomial of -y21?

must be non-~negative.
If a proposed y allows these two conditions to be satisfied,.
then the bridge removal can be performed. Two specific tyvpes of

bridge removal will be discussed in detail later in this section.

i Some Necessary P:ecautioﬁs. Buildingvtﬁe network in Figuré
2-5 will in general raquire realization of the ;dﬁittan;e (1-K)y.
Therefore, whenever the bridge removal is employed during the de-
- velopment of 2z network, special precautions are necessary to avoid
the appearance of negative elements (i.e. negative elemants ﬁéy oc~-
-cur if X is permitted to exceed unity). The author suggests the
following apgroacﬁ, especially for the novice. At the-outstart, T
can Se written (séaled'as no;edbaféér Eqn. 1-19) in such a manner
cthat tﬁe upper bound on K is unity. The_siﬁplest way to accomplish

this is to muitiply T (and consequently.-yzl) by thé'constanﬁ:'

=]

2 (di/ci) where di and ¢, are the coefficients of tﬁe given T per
"Eqn. 1-19. Then application of Eqn. 1-22 gnarantees‘thaﬁ the K of
2ny RC 3 T.N. realization of‘the'resulting T will satisfy tﬂe in--
equality X <1, | -V

’ (Note thag‘whenevef bridge removals are employed, a K of ek-
actly unigy will in many cases require a fewer number of eiements
since the a&mittance (1-X)y disappears. Thus, the above scaling éf
the maximun possiﬁle K.causes the two desirable featufes, reali-‘

zation of maximum K-and realization of unity XK, to occur

.
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simultaneously.)
Unfortunately, after a bridge memoval has been made, the maxi-

mum possible X for the remaining network X' may exceed the maximum

X of unity which was set up at the ourrtart of the develcopment of N

3

¥

(sueh a situationa ariscs

e

n Exerple 2-3). This presents ro serious
obstacle, however, sirnce a gain reduction step can always be used at
the completion of the davelopzment of X" to prevent K from exceeding

unity, As 2 matter of fact, the gain reduction step can be used to

~

of

obtain a exactly unity - the reswlt being a network with maxi-
-mum possible géin. 1% N' were mistakemly developed with .a X t:hat
exceads unity, then realization of the admittances dependent upon K
would require use of at least one negztive element, and the overall
network would not be an RC 3 T.N. -
As an alter_native to tne above approach, the’reaﬁer may wish
to experiment with scaling the meximum possible K to some number
other than unity. In such cases the realization shduld' be car.ried
out .only to the point where .a final sarieg removal will complete
the devélopmeﬁt. At this point, elemext values which are éependent
upon K can be examined. If completibm of the development by- a saries
rémm}al would introduce no negative elements', fhen i£ should be per=-
formed. I the series removal would czuse a K sufficiently large to

Intrcduce nezative elements, then a gain reduction step should be

employed to reduce K just enough to eliminate all negative elements,
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o ttdent

he Bridse Cordructance Removal. One of the most useful types
of bridge remgval is the bridze Eonéuctance; y = éO' ‘Thisiremoval
can sométime; bé‘usedvgo prodice a zero in~y21' at $ = a. The'value
of the removal can be calculated by evaiuating Eqn. 2-19 at' § = a :

: -Y2 1 (a) :
gy = T, - ‘(2-21)
where it is required'that:

(1) Oﬁgo'gco = yzz(O), where g = GO is permissible only

when a = 0,
.(2) -y21' must have all non—nagative‘éolynomial coefficients,
aIf the proposed removal meets these restrictions,-éhen it can
be perfofmed with assturance that N' will be a realizaﬁlg’RC 3 T.N,
A cdmﬁod zero wight then be produced by a shunt removal and subse~
quencly eliminated by a series removal, This procedure.will be
illustrated in Examp1e>2—2.

As mentiéned.in Section 2.1, production of-é.cﬁmmon zZero re-
quires'special att;ntion whenever éhe transfer functions have right
half plané Ze¥OoS. ccduction of a common zero at § = a accoumplishes
hothing if cancellation of the factor (S-a) froﬁ the numerator of
fyzf leaQes a polynomial with negative coefficien&s. If a = 9? how=~
ever, restriction (2) above guarantees thét no negative coefficients
will eppear. Hence, a common zsero can be produced at S = 0, and can

.subsequeﬂtly be elimiﬁated by a series rémoval. _Thié fact makes
p;odﬁcfion of # zero in &21' atkS~= 0 an especially desirable pur-

pose for the bridge conductance removal,

P



Examole 2-2, Develop a network having the following

parameters: 2
. S 42842 .

L (SE(843)
(5+1) (573)

Y95 stz and T =K

Tabulation.of the de?elopment and the network schematic are
given in Figure 2-5. Note that Br is used to indicate a
bridge type removal, A bfidge conductance is renoved first
to produce a zero in &21' at 8=0. The value of the removal
is calcglated from Eqn. 2-21: gg = -yzl(O)/K = 1. yZZ(O)'=
3/2 and (SZ+ZS+2) - (5+2) = SZ+S, which show that restrictions
(1) aad (2) above are sétisfied.'.Thus, the removal can be
performed. -

,Tﬂe remaining networik can Be realized as a 1édder since
the zeros of T are both real. éhe particular realization
given in Figure 2-§ was accomplished by producing a common
zero at $=0 through removal of a shunt corductance. A series
capecitor was then used to eliminate this common zero. .An-
other shunt conductance removal produced a cormon zero at
S=~1. Climination of this ccmmon zero was accomplished By

the final series removal.

The Bridae Capacitznce Roemoval. Another basic and useful

removal is the bridge capacitance, y = ¢,S." The bridge removal of a
capacitarce can sometimes be used to produce a zero in yzl' at § = a,
The value of the removal can be calculated by dividing Eqn. 2-19 by

XS and evalvating the result at § = a; this gives:
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i . 2 2 I
| (S+13:5+3) § +2842 . S2s+2
! 572 X 52 X (5+1)(5+3) 1 B? '
2
ST+358+1 S(s+1 S(s+1 1
Tei2 x S50 kK 2 7 | 5
S°+35+1 -
S(5%5/2) g , S+1 5
S+2 XK 5572 5 | se
©+5/2) X (st : 15
5(S+5/2) 5K (§+1) > sh
. f .
5(st1) d K=1 5(s+l) | Se
1
AAN
. 5 ,
, it 5/4
. 1
5

Figure 2-6. Tabulation of the development and the network

schematic for

Example 22,




SO :
2L 2-22)

Cw * T @

where it is required that:

. Y22l N o

(1) 04c.,,%C, = —._S_iS*ca’ where ¢,= C, is permissible only

when a =00,

2) ~y,1"must havea éll non-regative polynomialvcoéfficients.
Nore that recuirements (1) and (2) cannot be met’unles; Yoo and Y23
both have poles ét infinity.

If the proposed rémoval meets these restfictions, then it can
be performed with assurance Ehat X' will be a realizable RC 3 T.N.

A common zero at 8 = a might then be produced, and subsequently elimi-~
nated by a series removal. Again, however, common zeros aré advan=
tageous only when thgir cancellation leaves a polynomial with all
nonfnegative coefficieants in the nuﬁerator of -yzi'.

The special, and perhaps ﬁost useful, purpose for this type
of removal is eiimination of the pole of -¥gy Bt infinity. Thi% can
be'interpreCed as shifting a éero‘to infinity (i;e. a.=tx0 to cancel
the pcle there, Furthermore, if yzz' has a pole at infini?y,'it i;
then a.?rivate pole which can be eliminated by a shunt capacitance
removal in the next step of the development.

Exanmple 2—3 develops other necworks for the paraﬁeters éiven

in Example 2-2 to illustrdte use of the bridge capacitor removal.

Expaple 2-3, Develop a network having the same parameters
specified in Example 2-2,
This example will be worked twice to illustrate two dif-

ferent attacks to the gain reduction problem which arises in
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the Cevelopment after the bridge capacitance removal. The

two developments and schematics are shown in Figures 2-7 and

2-8. 1In both developments a bridge capacitance is removed

st to eliminate the pole of

s
Lx

4]

-¥yy A€ infinity. The value

of the capacitor is calculated from Eqn. 2-22 with a =%,

The remaining network, after this removal, can be realized as

a low pass ladder.

The Ffirst solution (Figure 2-7) realizes this ladder by:
producing a private pole at infinity with a series (y=2) re-
moval. This pole is then eliminated with a shunt capacitance’

removal (y¥43). If the development were completed at this

soin: with a series removal, then (see lime four of the table)

3
e

X would equal 3/2. Because of the bridge removal used carlier,

_a K exceediag ﬁnity would reqﬁire a negative capacitor. Thus,
the gain-reduction procedﬁre must be applied with A = 3/2.
Jizh K chosen to be unity, wbiqh is the maximum poséible K,
Eqn. 2-17 gives ©= 1/3. Fence, a shunt removal of y = GOt =2
is usaé’to reduce the gain. The final rémovél is then just
a-sefies conducténce.;

The4seconﬁ solution (Figure 2-8) reduces the gain of the
low pass network at the outstart éf its development. This‘is
dona by providing a.d.c. path to gréund. This method has,thé
advantage of providingfa load resistance at the outpgt ter~
minals; which is-de;irable in mady aéplications.

$ince the d.c. gain of the low pass network determines K,

the zmount of conductance go can be caleulated to yield a K
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Figure 2-8. Tabulation of the development and the network
schematic for Exarple 2-3, second realization,
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of exactly unity. I, in the development of the remaining
netwvork, ¢are is taken not to have any d.c. paths to ground
(other than 5,2t the output), then the d.c. gain will be:

yZz(o) 'go - g - go .
N Y27 )

T(0) =

where the parameters here specify the network after the bridge
reméval (see line fyo of the table). Solving this e§uation
for g, gives: g, = ¥,,(0) (1 -7(0)) . Letting K be unity
gives T(0) = 2/3; thug, gy = 1/2. A ‘

VAs expacted, after this shunt removal (line three of table)

the meximum K for the remaining network is unity. The reali-

N

ation of this network is carried out without any d.c. paths

to ground. Consequently, the realized K is unity.l

Adgitional Cormments About Bridae Remogvals. The bridge re-
moval is ;o: only useful to shift complex zeros to the real axis (or
infinity) where they can then be realized by shunt-series :emovéls:ﬁ
It can be applied to network functions which are aiready realizable
-by 2 ladder type metwork. In wmeay cases this will permit a higher
network gain thén ﬁha% which could be attained with a ladder struc~-
ture. To illustrate this, Example 2-4 develops a network for the
parameters specified in Example 2-1., A X of unity is dbtained by
’ ge removal, whereas the upper bound on K for the laddér
structure is 8/10.

E?amale 2-£, Develop a,neth:k with the paraméters T and Yoo

specified in Example 2-1,

Tabulation of the development 'and the network schematic
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9 .
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@ AAA

Figufe'Z—g. Tabulation of the development and the aetwork’
schematic for Example 2-4,

- 42 =




Unfortunarely, the bridge removel does not alway; simplify
realization in the straightforward manner that it did in Examples
2-2'énd 2-3, £ is easy to construct a problem where the transfer
4function-has z pair of complex zeros yet a bridge removal does not

-

simplify the netivcrk rezlization. Such a problem is given in the

next exsanmple,

Exemnle 2-5, Develop a network having the following network

paraceters: , 2
_ (SR . e
Y22 5 T2 and ¥y =K T -

A brildge removal in this case fails to improve the set of

sarameters; that is, fails to meke the remaining network

easier to realize., 1If, however, the pole of y21'were at or

than S8=-3), then a bridge capacitance removal (a bridge con-
ductance removal) would simplify the realizationm problem.

Since 2 series removal can be used to shift ‘the poles of

»

.enice the poles of Yo1> the first approach that might

Vg @nd

be tried is to shilt the pole of Yoo Lo 2 region where the -

bridze recoval will be of some use. However, the series re-
roval permics shifting the pole oaly to values between the
two zeros cf Yoo+ It is desired to shift the pole outside of

this ragion. The difficulty can ba overcome by first using a

shunt rencvel to shift the zeros of Yoo+
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T

schematic for Exarple 2-53,
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Figure 2-10. Tabulation of the development and the network




A shunt removal is therefore used first in the development.

]

he valuelig calculatec to shifc a zero to S=-3/4. The re-
sulting network has a meximuz X of only 7/10. If the zero
were shifted to a value closer to -1, then a higher gain
could be achieved. ‘

A series removal i§ then used to éhift the péle of Y,o to
S=~1l., With the pole in ;his position, the bridge removal can
be effectively used, The comzlete development is tabulated

in Figure 2-10.

2,3 The Parallel Network Removal,

In oxder to grarantee generaliéy oi the realization procedure
and to provide alternate solutions for the 'more difficult to realize
network paremeters, a fourth type of removal will be added to the
retwork development précedure'- the paraliel network (X7) removai.
Splittinz 2 network into two (or more) parallel networks in order to
simplify realization is by no means a new idea, It has been employed
by Guillemin 216}, Ozaki ZZS}, and Fialkow and Gerst [9], just to
name a few. .

_The parallellpetwofk removal will be presented here as an ex-

tension of the bridge removal. With a bridge removal, only RC driv=-

P

ng point admittances cén be subtracted ffom -yZl/K in an attempt to
shift the complex zeros of Y21 to  better positions. In many cases

it is more desirable to subtract functions which are not RC driving
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oint adnittences. For instance, given the parameters of Example

o

~

: " . R . 2 .
-5, it would be convenient- if KS™/(8+2) or 3K/(S+2) could be sub-
tracted frem “Ya1* The parallel network removal permits either type
of subtrzction.

A general parzllel network removel is shown in Figure 2-11,

| 3

<

TFigure 2-11, The parallel network removal.

The parameters ol NA‘Wlll be called Yonpr Y2142 and TA'v The pa-
rameters of X' can be calculated from:

Yoo . T Y22 T Y224 ) (2-23)
e L . P
Y21 Y21 Y214 » | (2-24)
~and T = ey gy e ) (2-25)

Note that there are actually two remaininé'networks to be
realized: NA and N'. Eacﬁ of these will be feélized to within a con=
stant multiplier XK. This may reguire use qf a gain reduccioﬁ'step.
in the development of one (or more in case several P removals are
used) of the nécﬁorks in oxder to obtgié the same X for each network.

Therefore, it is suzgested that each of these networks be developed

only up to the point where a series vemoval will complete their
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realizations. At this point the maximum X is easily determined for
each network. The minimum of these values can then be chosen, and

cach network develcopment can be completed in such a menner that its

K is exactly the above value,

Tebulation of 2 Removals., In the development table, when-

ever a parallel network is removed, the symbol P should be entered
in the 'type' of rewoval column. In the 'N' column a letter, such
as 4, should be entered to designate that the network N, has been

" &

A

be uead ia the event thet other parallel networks are removed during

[

he davelopment of X' (e.g. B, C, D, etc.).

‘At the time of the removal of N,, the paramaters of NA should
be enﬁe:ed in another table or sufficiently far down in ghe same
itablc. Throughout the developmeat of X, the lettex 'A' should be
placed in the network designation (XN) column, If it is necessary to -
remove barallel networks during the development of N,, the desig-
nations AA, AB, AC, etc. should be used. '

Thus, é letter or letter group appears in the development
table for the first time when it is removed from the network which
is Being deve1oped at that time in the table. The next time that
tﬁis letter or letter group appears in the table is when this par-
ticular network is to be developed.' It then continues to appear un-
til the development of this particular network is completed. Future

cexamples will help to eclarify use of the 'N* column,

Only two specific parallel network removals'will be
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_considered in detail - the strict #igh pass ladder and ‘the strict
low-pass ladder. 1In either case, specification,of Y224 comgletely
determines the ch§ractaristics of the removal, Tﬁus, yéZA will be-
entered ia the y reroval column together with an'H (high pass) or L

{low pass). This information is all thot is needed to develop NA

at a later time,

£

T

Tha Hich Pass Ladder Removal. Cauer's well known continued

fraction expansion of an RC driving point admittance (e.g. y22) a-
bout the origin gives a ladder network with all transmission zeros
(i.e. zeros of T) at the origin (seé Figure 2-12). 1If such a net~

work is considered as a parallel removal, NA, then:

i . n‘l‘a s .
i
y = oS+ E - , (2-26)
224 . =1 57 5
¥;11'~ - - and: - e © o nel

n 1
o kS TT .
g=1 5Py

Ya1a c (2-27)

whére K =-1 unless some capacitive path to ground is permitted in
the develcpment, in which case K<1, High pass ladders will later
be referred to as first order, second order, etc.” Equations 2-26"

and 2-27 deseribe an nth order high pass ladder.

C oLt Lo Tk .

Yooa T 1, T 1 1
- . iser Toos Fog teetae
1 2 n
- Figure 2~12, An nth order high pass ladder, N,.

A
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Equafion 2-23 shows that Yoo is calculated in the same man-

ner &s y22' for a shunt removal, Thus, must satisfy the re-

Y224
stricticns placed upoa y in the shunt removal discussion of Section
2,1, TFurthermore, 8y = 0; and a pole of Ypq can be completely re~

moved only when the corresponding pole of -y21'is simultaneously re-

moved. The coefiicients of Ypp4 in Eqn. 2-26 are otherwise arbi-
trary. They might be selected to perform some zéro shifting as an
extra feature of the parzllel network removal.’
Examzle 2;6. Develop a network for the parameters given in
Example 2-5,
Fizure 2-13‘éives the tabié and schematic for this de-

velopment. A secend ovder high pass ladder, N,, is removed

A’

from N at the curstart. The pole at infinity is eliminated

from both yzé"and yé17. The residue of /8 at S=-2 was

Y924

arbitrarily chosen to be 1/4. Thus:

s+ 1.8 _ s(st9/4)
4 S+2 S+2 ’

©

Y224
which is the expression recorded in the y column for this. re-

noval,’

»

The Iow Pass Ledder Removal. Caver's continued fraction ex-

pension of an RC driving point admittance (e.g. y22) about infinity
gives a ladder network with all transmission zeros at infinity (see
Figure 2-14), 1If such a network is considered as a parallel removal,

thens

n
Loe a_S
- i -28Y
Yo2n T % T 21' stp, (2-28)



Figure 2-13.

Y22 | Y231 | ! ) d type | ¥
e %) B 2 , {52 o
7 STHST3 >
7 s§+i2/7 o S¥3 4K ST z s
& 52 ® 52 7 sH12/7 4 ‘.
S(s+12/7) 2(8t3) 0 g | P
y i K= Z(se
E(S"’) O K=1 ) 2<ST3) Se
. 2 '- '
s(5:9/%) Xs_ KS 2s Se |A
52 S+2 s+e/4 8
o(s+9/8) 9KS 8 % Shot 4
i i
gs 0 K=1 g5 Se A
‘g 9/8
11 11
1] i
81/4
v
7/2 '
] .
| r—g ma -y
" 21/2 _J__ |
;’; 21/8

Tabulacion of the development and the network
schematic for Example 2-6,
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| : B |
= ) .-—..i_'-.. -
el Yaa T % E S, * (2-29)

-

where X = 1 unless so=e resistive path to ground is permitted during
the de;velo;xnent, in whkich (Qase K< lb. ” “

As in the iigh pass cese, yzzA.must sgtisfy the shunt removal
restrictioﬁs. Furthermore, ca,=‘0; a pole of Ypo can be completely
-removed only when the corresponding -pole of “Ya3 is simultaneouély
removed; and, A éan'éqﬁal yZZ(Q)‘only if a zero is simultaneously
producéd in y21fvac S = 0. The coefficients of yzéA in Eqn. 2-28
ere otherwise arbitrary. - - .

| Examle 2-7, Dévelop aknetwérk having the parameters speci-
T £ied in Examples 2-5 and 2-6. .

'Figure 2-15vgives the table and schematic for this reali-

zation. A first oxder (nél) low éass {adder, N,, is.removed‘

from N at the outstart. fhe'residue'of y22A/S at S=-2 was a-

gzin arbitrarily chosen to be 1/4. go was chosen to produce

* a2t $=0. The remainder of the development

e :ir | -_j:c -]—c ' .
A

2 ;E; 1
oo a2 1 1 1
228 Lo s, + ;-1— T .

Figure 2-14, An nth order low pass ladder, NA'
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Figure 2-15.

Tabulation of the development and the network

schematic for Example 2-7,
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.Bridgé Renoval (g;)

Remaining network N': y22‘ = Y99 <Y
.

Vo' T
TH= Iy
Pérpose: (1) To produce a real non-positive zero in y21'.
{(2) To el?minate the pole of Y21 at infinity.
Special precaution: Either K must not exceed unity; or if K:>1;
. then it is necessary to reduce the gain to the ex~-
tent that no negative elements appear in the net-

WOTrK.

Parallel Network Remeoval (R)

"Remainiﬁg network N':' y22' = Yy " Yoox
Vo1 T Vo' Yy
T = gy o'
Purpose: (1) Same as for bridge removal. This removal has

more flexibility, but usually requires more ele-

ments,

Special precaution: The K's for each network must be equal,

_The author suggests using the following priority list when de-
ciding upon what type of removal should be made (unless it is de-
sired to have a particular network structure):

(1) Use a series removal whenever possible. Series removals

never czuse an immediate reduction of maximum possible gain.
(2) Use a shunt removal whenever possible, unless an undesir-

able reduction of gain is caused. by the.shunt removal,

(3) Use a bridge removal whenever series and shunt rerovals

are impossible or undesirable, assuming of course that the
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2.4 Summary- and Examples.,

LSLS section presents a brief Sumﬁary of the typés of re~

. movals and their purposes. Siﬁple'exémples have been given pre-

viously zo illusirate certain items in the presentation of\the reali-
zztion procedure, Several additibnal examples are given in this

saction to show the ease with which sllout’y more compllcated net=

works caa be developed.

Shunﬁ Removal (Sh)

.-5-——1-?0 1. $ = -
Ruea*nkn network N': Y22 Yoo y
Y21 T V21

Purpose: (1) To eliminate a private pole.
(2) To produce a common zero.

(3) To ‘shift the zeros of Yoge

Serles Removal (__)

Remainin; aetwork N': I/Y22 = 1/y22 ~ 1y
R T' =_T .
Vg T Ype'T
Purpose{ (1) To eliminate a common zero.

(2) To produce a private pole.
(3) To shift thke poles of ¥,y and
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bridge removal causes a simplification of the problem.

(&) Use a parallel network removal whenever the bridge re-
moval is impossible (or possible only after excessive shifte

ing of poles and zeros). If a high or low pass ladder is

x

used, the order is an indication of the number of  elements

neaded to realize the ramoval., Thus, it is desirable to re-

2

‘move the lowest order ladder which accomplishes simplification

E-

of the remaining network.

Examole 2-8. The first examplé to be considered is given,in
Figure 2-16. The network is develéped essentially by repetition'of' -
three steps: (1) reﬁavai of a bridge conductance to produce a iéro
of transmission at the origia; (2) removal of a sﬁunt conductance to

produce a common zero at the origin; and (3) removal of a-series

capacitance to eliminate the common zero. 1In this example it is not

actually nccessary to complete the calculation of yzz' after the

bridge removal since the next removal is a shunt type. !

Y22,

calculated after the shunt removal by sumning the,bridge and shunt

can be

conductances, and then subtracting the total fromfyzz. .This saves"~

some unnecessary calculations. Whenever &z polynomial need not be

calculated, 'NXC' will be entered in the table in place of thke actual

polynomial (unless the calculation is very simple, in which case the

polynomial will be calculated).

Examnle 2-9., The second example to be considered (see Figure
2=17) makes use of ‘a first order low pass ladder removal. A second
order could have been used; but this would require) more elements.

If only' T is specified (not Yp9)s then a pole of ¥y9 could be
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Y22

~ . -y21

T

#419.000574122 . 00524296 . 005+192 , 00

s*48.00005°427 . 00052438 . 0005+26 . 000

K(S>+2 . 00005+2 , 0000) (S>+6 . 0000S+13

(3+2.0000) (5+5.0000) (5+7.0000)

K T7(5+2.0000) (5+5.0000) (5+7 . 0000)

(5+1.0000) (5+4.000C) (S+6.0000) (S+8

NNC

" KS(52+7.62865°+21,8005+16.,086)

2

KS(S +7,62865°+21, 8005+16.086)

S3+14 00082 +59 . 0005+70..000 s3+14.ooosz+59.ooos+7o,ooo NNC
sjs3+16;25732+83.eoos+134.171 ' & € s3+7.628632+21.8oos+16.085
53+14..00052+59.0005+70..000 '53416.25752483. 60054134 . 17
T3 2 : 3 K3 : T
2.0908 S +16i257$.+83.6008+134.17 2.0908K S +7.§zsss +21,8005+16.086 g
S°#11.5385+32.166 S +11.5385+32.166
- 7 7. ,
2.0008 = NNC 2 0908K 5(32+7.12853+16.o30) g, 5¢s +7.1iggs+16.o3g)
5°411.5385+32.166 $°+11.5385+32.166 :
, S(s?+12,0865+35.473) s%47.12855+16, 030
2.0908 SySs Ky
S +11.538S5+32.166 . S +12.0865+35.473
) 3 7 '
S +12.0865+35.473 $747,12855+16,030 &-
22.428 §+6.2073 22.428K $+6.2073
: NNC N $ (S*+4 . 54:60) S(S+h . 5460)
22,428 $+6.2073 22.428K o073 . K NNC
. 5(5+6.3712) g * SH+4.5460
22.428 St K sto712
871.69  (5+6.3712) 871.69K (S+4.5460) &
871.69 (S+4.5460) 3 K=1
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Figure 2~16(a)., Tabulation of the development for Example 2-8.



o - 3!

T it

y

o type
00 - . s*+8.00005+27.0005%+38.0005+26.000 [K(5%+2.00005+2. 0000) (S>+6 . 00005+13.000) o 63714 .
(5+2.0000) (3+5.0000) (S+7 .0000) (S+1.0000) (5+4.0000) (5+6.0000) (5+8.0000)! : r
" KS(S47.62865°421 .8005+16.086) kS (547628657421, 8005+16.086) i 2.3714
3. 2 “NNC ! . Sh
S™+14.0005”+59.0005+70.000 i
- : 3 2 !
& K ‘83+7.628652+21.8003+16.086 ! 1.9167 S Se
$°+16.257S +83.6005+134.17 !
3. 3 T i -
1 2.0908K S +7.§286$ 421, 8005+16.086 8 % 1.0456 Br
5°+11,5385+32.166 o :
2 i
2.0908K S(s°+7.12855+16.030) K. S(S +7. 1iSZS+16 -030) } 7.6758 sh
: S™+11,5385+32.166 . I
2 »
3 X Sz+7.12853+16.030 2.3058 § Se
Vv S"+12.,0865+35.473 ’
: 7 _ . ‘ .
S +7.12855+16.030 &-
zz.azsx $+6.207% 57.918 Br
S(5+4.5460) : S(S+4.5460)
22 428K Ste 5073 K e 70.248 sh
- © SH4.5460 '
b k38 23,020 S Se
871.69K (5+4.5460) & 1591.0 sh
5 K=1 871.695+3962.7 Se

|

of the development for Example 2-8.
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. B 9
Network Parameters -~ i Removal
i

| oy ey T )y |eype
(82 (86} (5710) x(sos2+58+30) |R(s+33y (s2-25:100 15 L k8 H P
%) (8+8) (S+4) (S+8) (5+2) (5+8) (ST10)!1 16 ~ sS+4 g
NNC XS (s +s—:-1/4) ngsz—:-s+1/l+) 45 Sh
(545 (S+5) (5+%) (5+8) NC 16
s¢s%:55 55 /£:5+43) , s2rsr1/4 ! &3 o | g
($%4) (5+6) v %455 745443 32 |
43 $555/Gsi3 a3 | sPeseise { a3 |,
11 s#76/11 11 © $¥76/11 v 304
L3 XXC 3KS (>—L°93/30+) K8 (8+293/304) 7353 Sh
11 S%76/11 ll(b+7o/_ll) , NNC 304
43 S(S+14£3/19) ! $+293/304 6149 o | o,
11 5+76/11 v - | 7 s+143/19 1444
143 0qs 143 " 95,095
2(8+143/19). R(S+293/304) \! 304 -] 5B
143, onson l - H143s/3 +
T3 (5+293/304) v K=1 41899/912| °°
23 $:50/23 15K 1 60X 1 23 Se
16 S+ & S+4 23 5+60/23 16
529 ., 35 529 ¢ :
51z (5¥60/23) 1. TR K \/ 5125 | 5h
345 - 345 '
128 v k=1 128 se

Figure 2~17(a). Tabulation of the development. for
Exzample 2-9, first problenm,
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chosen at § = ~<15/2 instead of § = ~8; This per@ifs additional sim-
plification by the first remaval (a double zers at the origin is
produced by the P removai), and consequently one less element @ is
equired for the overall network. ‘Figure 2-18 gives’the developmené

for this choice of Yoo

Examnlev2—10. Iﬁhthe previ;us éxamples it was qﬁite easy ts
develop maximum gain'networks since the maximum occurred'at infinite
'frequency. in this example, T has zeros at‘ﬁﬁth S*{QQamd 8= 0,

Consequently, it is quite difficult to achieve a K near the upper
boﬁnd of unity. Tor the development given in Figure 2-19, a X of
only 0.273 was achieved.

The maximum realizable,g;in.has been reduced twice during the
dével?péent of the network. The first removal reduces it from unity
to 9/10. If the poles of y,, had been chosen closer téi—a? te.g.
poies atv-Z.S, ~-5.5, and —9.5),.ﬁhen less gain reduction would have
occurred during this removal. However, the maximd& K would.be re~

\duced to some number less than 19/20 no matter howkclose the poles
of yéz are chésen to the zefos. A :

The next shunt removal (shunt capacitance) causes another re~
duction of realizable gain. After tﬁis rewoval (see line four of
table), X c#nnot exceed 71/260. If the poles of yzz had been shifted
closer tovthe origin prior to this shunt removal, then a less serious
reduction in gain would have occurtea. This could be accomplished
by partial removal of the zero of yzz'ﬁhicﬁ is nearest the oriéin

(this zexo is located at apprek S = =2.5594). However, two
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Network Parameters ' Removal
Y99 ‘ “¥21 { T y ltype'N
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(S+2) (S+5) (S+9) KS (S+1) KS (5+1) 3 Sh
{578 (S+15/2) (5+5) (S71572) | (o+2) (5+5) (5+9)
S(s°+135+77/2) l XS (S+1) 11 o se
(57%) (5+15/72) v 2135477 /2 | 60
77 sPe3str7/2 |77 K S(s51) ‘ | 5929 | g
17 S¥211/3k |17 © $+211/3% v 211
77 S(S+1434/211) l X(SH) 220,836 (| o,
17 S+211/34 Y S+1434/211 ] 44,521
2858 2868 I 13,507,564
SoH(S¥1434/211) | S5 K(SHD) v i—’__‘t—'u,eos Sh
2868(s+1) J, K=1 28°8(s+1> Se
2(s+2 &K _ZK
S St 592 2 Se 14
(5+2) 2K ¥ s Sh | A
L2 \ K=1 2 Se A

Figure 2- 1°(a5

Example 2-9, second problem.
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adéitional elements would be required.

Xé matter how much pole and zero shifting is.dpne in an az-
tempt to increase K, the basic approach of realiging the transmission
zeros at S=0, S=co, and then the complex transmission zeros will
never yield a K.greater than or equal to 1/2, From this approach
the resulting network is basically a cascade connection of three net~
works: one with complex transmission zeros, followed by the networks
with transmission zeros at 8=, and S=0 respectively. If the load-
ing of each cascaded negwork by the following one Wefe negligible,
then the three networks would have the transfer f#nctions:v

SZ+S+7 10

(573)y (8+6y * S+10 *

these indicates a K of 1/2. However, K = 1/2 cannot be achieved ex-’

and respectively. The product of

S
S+1
actly because the loading is neﬁér completely negligiﬁie.
In oxder to get a larger network gain it appears that a
parallel network'remgval would have to be made (or perhaps a bridge
’.removal made earlier in the development). In-any event the basic
cascade structure of the network in Figure 2-19 yéuld have to be
avoided. The use of a surplus factd; such as (S+11) would probably

make it much easier to realize a higher K.

Exasole 2-11. Realize the transfer function:
x shs
8 (5+1)(s+3) °

One approach to this problem might be to choose an appropriate

T =

pole for Yoo and then begin the development. If this were done, it

would be found that a bridge removal could not be uséd. Hence, either

- 65 =



a low pass or a high pass paralle}'ladder would probably be the
'first témoval. In either case the final result would be a seven
élgmegt Twin - Tee type network,

However, if a surplps factor 1s introduced into T, then fhe
parallel network type of reﬁoval can be avoided in the develbpment.
If the surplus factor isAcarefully chosen, then the number of ele-
wments remains the same. With a surplus factor ingroduqed, tge net=

work parameters are: r - 3 ;Sz+8::S+a}
8 (S+1)(S+3)(S+a) ?
3K 8tasi+8stsa
8

- (SH1)(s33)(Sta)
and (§+b) (S+c) .

Y22 (5%b) (5%¢) »

¥yq =
Since one pole of Yoy must lie between S=~1 and S=-3, let us

choq;e b=2. 1If a b;idge capacitance removal is to be used first to

eliminate the pole of -&21 at infinity, then it would Be advanta~-

geous to have»-yZI' even further simplified during this removal (i.e.

to have the first three coefficients drop out). Thus, it is desiréd

to have Sz+(b+c)s+bc equal Sz+as+8. Equating coefficients gives c=4

© and a=;. The corplete neﬁwork devélopment is carried out in

Figure 2-20, A
The above procedure for selecting a surplus factét can also

Se applied successfully to the transfer function given in Examples

2-5, 2-6f and 2-7. If this is done, a six element realization can be _

obtained.‘ The network structure would be the same as the structure

of the network shown in Figure 2-20 except that no shuat cadpacitor

would be connected to the output terminal.
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Gy s | X Em e 8  ™C g | 5B
4 s2+19745+9/2 @ 9K 1 4 e
. RV — .
(5+2) (5+4) 2 24 757h5+9/2 »
16 s439/ast9/2 | 72x 1 8 165 | o
5 " sti4/5 5 S+1&/5 5 -
156 S+30/13 - 30K 1 156 | o,
25 S+14/5 Y 13 $+30/13 25
227 (5+30/13) o 8 22 sn
117 g . 117
. K=1 5 Se
3/8
11
E
117/4 156/25 4
O AAA, AMY AN ®
507/40 16/5 T s5/8
' v
Figure 2-20, Tabulation of the development and the network
schematic for Example 2-11,




_ CHAPTER 3

A COMPARISON WITH OTHER METHODS

This cﬁapter presents alteréabe soluéions to network reali-
zation problems (using the method of Chapter 2) which have been
solved previously as illustraﬁive examples of the various methods to
be discussed. T?e auihbr assumed during the &eyelopmént of the net~-
works presented in this chapter that maximum neéwork gain and a low
number'of elements were (in the order stated) the most'important
‘design criteria.- Other criteria were ignored. For example, no at=-
‘tempt was made to obtain a particular network structure, In all of
the networks developed, the maximum network gain was achieved. In
addition, thé resulting networks>require fewer e¢lements than what

was required by the earlier solutions,

3.1 The Fialkow-Gerst Networks.

. If T satisfies the conditions given in Eqn..l-i9, Fiaikow and
Gerst [9] have shown that T can be realized by an RC 3 T.N, Their
realizétion procedure coﬁsists of splittiné the nétwoék into two
parallel networks each of which has aqpecuiiarity that enaﬁles it to

be simplified, Then each of the two remaining networks can be
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treated as a3 new problem which is less complex than the original.
The Fialkow-cefsc method is completely general. The gain constant,
X, is exactly specified beforehand. Uﬁfoftunately, the method often
calls for an excessive number of elements,

For exacple, consider the network produced by Fialkow and

Gerst in [9] for the transfer function: -

2
. (87-~-5+9) (513) .
(S+1) (5+3) (5+14) * (3-1)

T
Their original solution is given in Figure 3~1l. It requires an un=-
necessarily large number of elements,

Later in [10] Fialkow gave a different solution with fewer

elements to an alwmost identical problem:

2 .
= {8 -8%9) (543 _ (SFL) (5+3) (5+12) }
TS Gy sty M Y2 T T (siy(stey 0 O

Fialkow's network is pictured in Figure 3-2.

The proéédure of Chaptgr 2 was applied to the set of pa-
bramcters given in Eqn, 3~2., The result is shown in Figure 3-3. The
transfer functioa in Eqn. 3-1 could:be realizéd in the same mannér.
The removal coefficients would be different, but the network struc-
ture the same. The realization in Figure 343'requires fouf fewer
elements than the solution given Sy Fialkow. A

' The first two steps iﬁ~the development require a special ex=
planation., A second qrder high pass ladder was removed first to
eliminaté the poles of Yoo and ¥,y at infinity. Regardless of what
coefficient is chosen_as the residue of y22A/S at S=-6, the same g&in

reduction step will be necessary after the R removal. Following
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{ F— { |
L—AAA—
" 16
54 " 175/4
)-—l 189/4 10
- AN/
243 ] - 20 - 105/2
189 135 140 —— 280

ure 3-1. A Fialkow-Gerst netwerk for the transfer

Fig
o
furiction given in Equation 3=~1. .

12.00 _
3.000 " 2,000
1 it
1 RS

T

F 13.92 * 4.000
14.50 1 3.200
21.75 27.55

Figure 3-2. Fialkow's network for the parameters given
in Equation 3-2,
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> Selii X sHeril 3 Se
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" 99/5. 3/

§£?275/64

Figure 3-3. Tabulation of the developwmeant and the network
schezzvic for the parameters of Equation 3-2,
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the procedure outlined in Example 2-3 (second solution),‘a shunt con=-
ductance removal was chosen for the gain reduction step. The value
of the condgctance was cglculated from: 8 = yZZ(O) (I-T(O)) , which
gives.go = 3/4. ' ’ ‘ '

With this valve in mind, and remembering that it is inde~ ™™~
pendent of the above mentioned resiaue, the residue was chosen so
that after the [P removal, the shuat removal would not only perfofm‘
the necéssary‘gain reduction, but woul& also $hift a zero of Yoy to
S = -9/2 which produces a common zero at § = ~9/2. The value of this

residue was determined from: °

((s+1 543) (s+12) _ o _ .aS 3_) = 0
. z oL 2
(54+2) (S+6) 5+6 4 §=-9/2

which gives a = 9/4. If this special choice of residue had not been
made, an additional element would have been required.
The remainder of the developmwent is justfrealization of a

ladder network in the usual manner,

3.2 Cascade Realizations.

The cascade approach to the RC 3 T.N, reélization problem c%n
aiso'be Ehought of as an-extension of the zefo-shifting procedure,
If there are no compiex transmission zeros, the usual result is a
laddcr_network; To realize complex zeros, networks known to have a
. pair of comp1ex zeros (e.g. the 'bridged tee' network) are flaced in

cascade or tandem with the remainder of the realization. Usually,
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only mini=mum phase transfer functions (i.e. transmission zeros are
all in the left half plane) are considered.
The following problem was solved in [25] using a cascade

technique:

(S+2) (S+3) (324.-6s+1s) A
(5+8) {S+9) (S+10) (§+11) *

T = L (3-3)

The resulting network is given in Figure 3-4. A soldtion.yith five
fever elements, obtained by the method of Chapter 2, is given in
Figure 3-5. Since the degree qf the denominator of Eqn, 3f3 is fout;
Figure 3-5 gives a minimum‘capacitor s.oiution. h
The fetwerk in Figure 3-5 was developed in the same manﬁer
as the network in Example 258. Yote fhat the network structures are
iaéntical even though Example 2-8 had two éai;s of complex tran$-
mission'geros. -
Poth solutions:to Eqn..3j3 given hére‘possess'an unﬁsual
- spread:in the order of magnitudeé of eiement'values. This spread is
attributed to the relative closeness of the four poles of T [25].
‘In order fo obtain the order of accuracy shown in Figure 3-5, it was
niecessary to caxry out'thé calculations to a higher degree of

accuracy than what is indicated.

3.3 The Successive T0~T Realizations.

An interestinz method of realization has been given by Ozaki
[28] and Lucal [23]. 1t consists of alternate TI" and T network re-

movals. This procedure allows specification of all three y
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Figure 3-5(a). Tabulation of the development for the transfer function given in Equation 3-3.
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parameters: ¥, yzi, and yll. The géneral strﬁcggté that dgn.be
expected from application of the metkod is shown in Figure 3-6.
ASiﬂce the method of Chapter 2 does not yield a prespeéified
Yy1° it ié so%ewhat unfair‘té compare its results to Lucal's nete-
vorks,. However, by neglecting yil and using the Yoo and Y21 given
by Lucal [23} in nis firsf example, the exact network given by iucal
was arrived at using the meéhod of Chapter 2. The details of the
" development and the network schematic are shown ia Figure 3-7. 1In
[23], Lucal also gives a second network fof the same parameters, but

it requires two additional eléments, ’

Another example given by Lucal has the parameters:

_ destsasdhsastinasss o (shen) sPasiny (3ohy
Y22 T T 35(5+1) (572 (553) Y21 (5FD) (5+0) (543)°

Lucal hLas devgloped‘cwo networks for these paraﬁeters (y11 was also
4 specified). The networks are shown in Figure 3-8. ’

The method of Chapter 2 gives a network with five fewer ele-
ments forvthe éarame:ers in Eqn. 3-4; howeverf ;he rgéulting Y11 is

diffetent than the Y11 specified by Lucal. The network development

~and schematic are given in Figure 3-9.

e 77 -



*UOTIBZTLLOX P9L~1d oATSSO00NS oYl *9-¢ 2anS1g

]

AN

- 78 =



y22 ' -y21 i T i y type
s>iostrissen o Sox3876572 (Sorasiresiz | s |
(572) (5+72) GrD4) | $drostiuse
i stas41/3 g StL2 2K s+1/2 6 e
(S+1) (5+2) D) | 73 (T, :
2 i
ST+28+1/3 S+1/2 8 I 30
6 §+5/3 4K S+5/3 ! 7 s Sh
12 (3+3/2) (S+7/3) & X 1 ( 32, . 1|
7(5+5/3) 3 SH3 .| 14| Se
a : . ‘ q .
23 (547/3) 11K 8 3Bs |
7 , 7
1n 8 K=1 11 | se
1
1
LR
, 132/49 .
1 ' o
11 | 6
' 66/49 '
o 33/7 30/7

Figure 3-7. Tabulation of the developmeat and the network.:
schematic for Lucal's [23] first example.' '
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Figure 3-8, Realizations of the arémeters specified in
Equation 3-4 given by Lucal [23 .
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Figure 3-9(a).
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Tabulation of the development for the parameters given in Eqdation 3-4,
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CONCLUSION AND RECOMYENDATIONS FOR’FURTHER STUDY

This thesi; has presented an effecgive‘RC three-terminal net~.
work realization procedure. The procedﬁre can be applied whenever
onﬁ-or'a;l of the parameters Yoo yél, ﬁnd T are specified. The
realization procedure is not a completely general method of RC 3 T.N.
btransfcr function synthesis since the realization’is completed only
fo within a constant multiplier K, a factor present in both T and
Ya1° Héwever, control of the network X is usuéily not too diffiecult’
because of tﬁe systematic tabulation of the development, If too low
a X is achie§=d,_it is an easy matter to find thé Egep or steps
which caused thé degeneration>of the network gain. An alﬁernate
development can then be made. i

The procedure gives the designer much control over certain
features of the finished product. Not only can the designer regulate
the metwork gaia, but he exercises control over items such as the
network structure and the number of elements, The procedure gives
the designer an unusual amount of imsight into how he can add ele-
meats to obtain a higher gain, or change the network structure to

4

save elements, etc.

Chapter 3 has indicated that the method c¢aa produce solutions

which are conmpetitive with networks obtained by some other. methods -
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especially if a low number of elementé is désired. Tﬂe author
balieves that this j;stifies investigation into the followiﬂg areas:

(1) Developrient of a éomputer program which would produce a
variety Qf networks for a given set of parameters. For 3 ﬁigh oéder
realization préblem, the circuit designer would tﬂen be'given
RUmerous alternate networks from which to choose. The program should
2lso have the flexibility to let the designer specify certain network
'configurétions, the result being a network or networks with such a
configuration whenever possible,

(25 Extension of the procedure to permit specifié;tion of
load and source admittances, Certain load‘admictancés can easily be-
Gesigned into the hétwork. Howevér, because of the bridge and
paféllel network removals, specification of a series source admit=
tance appears to be a difficult problem,

(3) Extension of the method to provide a realization pro-
ceéure for tranéfer.fuhctioné with complex poles. That is, develop-

ment of & similar RIC three-terminal realization procedure. .

- 8
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8. .

sh. .
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-

LIST OF SYMBOLS

éiplaﬁation.
'.Bridge femovgl.
~.Paraliel network removal.
,Seties rem&vai..
-Shunt removal.
.Network gain constant,
.keal part of S, ’
;Complex variable,
.Forward voltageAtransfer function,.

. Conventional short circuit admittance
" parameters. ‘

.Three~-terminal network.
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APPENDIX

:he rules for shifting zeros aﬁé poles of yzzlusing thé shuntv
and.series type of removal are easily verified by applicétion of the
well~xnown #oot locus technique. In this appendix the first rule
for shunt removals will be derived. The other rules follow by using.
similar arguﬁents‘

The Questipn to be answered is:’"How are the zéros of y22'
reiated to the zeros of 922 whenever par£ of a pole of Y92 is re-
moved via a sﬁunt type removal?" Assume Ehat the pole ié located at

S = -b. Then y22'.and Yo, are related by the followiﬁg expressiodi

as

v = - 82

Y22 Y22 " s ?

Lo Stb _
where: a < s yzz .

$=-b

' is an RC driﬁing poini impedance. Consequently,

" The impééance l/yé2
its poles and zeros alternate alongAthé negative real axis. A pole
is located at or nearest to the origin. The polég énd zeros of
1/yé2’ can be plotted in the § plane. The result will be a plot such
as the one shown in Figﬁre A(L).

Let us now estimate where the zeros of Yyq are located with-

respect to the zeros of y,;'. Rewriting the equation which relates
: 22 & 1

the two admittances gives:
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R a§
Y2 Yom e

Y2 %

The zeros of Y99 can be determined if the zeros uf:

y22' [} + (gxgigzzﬁ] #r¢ ¥nown.
if a =~O, then the zeros of y,, are identical to thz zeros of yzz'-
As a increases from zeré, the zeros of Ygp can be zi<imated by‘ex-
amining.the root locus of é/(s+b)y22'. This locus cz3 be determined
by observing the pole-zgro configuratibn in Figure £(2)., ¥aowledge
of this locus permits estimation of~she.zeros of 7,5 8 shoun in "
Figure A(3).

’It-can be concluéed that eich zero of Yop iz further from the
poiat § = -b than the corresponding zero of y22'. Tﬁus,'partial re-
moyai of the pole of Yoo &L S = ~-b produces zeros ipn yzz‘ ﬁhich are
closer than the.zeros of Yoo to the ppint S = -b. This establishes

rule (1) given. in the shunt removal discussion of Section 2.1.
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1 . zeroé =0
L o8 =
Yag 'L poles = X

(]

h i hid

v
'y

v
riy

L)

KV (2)

o

zeros of Yoo = []‘

X's and U's are same as.in (2)

G T ! Yo St G ( 3)

Figure 4. (1)'Pole~:zero plot of 1/y22'. (2) Pole-zero plot
of S/(S-i—b)yzz,'.' (3) Zeros of y,, estimated from ).
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